Date of Award
8-2020
Document Type
Thesis
Degree Name
Master of Science (MS)
Department
Computer Engineering and Sciences
First Advisor
William Arrasmith
Second Advisor
L. Daniel Otero
Third Advisor
Barry Webster
Fourth Advisor
Philip J. Bernhard
Abstract
Highway-rail grade crossing accidents are the second leading cause of fatalities within the railway transportation industry. Highway-rail grade crossing fatality statistics have failed to improve over the last decade, and in some years have increased. Because of these trends, research has found that considerable Federal funding initiatives exist to support and develop contemporary risk reduction methodologies involving machine learning and artificial intelligence. In accord with these initiatives, this thesis investigates the highway-rail grade crossing safety problem using machine learning to implement an ensemble decision tree-based classification application. The resulting classifier has been validated to achieve a less than three percent false omission rate and less than fifteen percent false negative rate for fatal accident classification. Classifiers such as the type developed within this research effort have strong potential to serve as risk reduction tools for existing infrastructure throughout the United States and can be used to prioritize funding for the most at-risk crossings. The classifier would also be beneficial to new railway systems engineering efforts by using a risk -based approach for assessing potential designs.
Recommended Citation
Cox, Christopher John Helmer, "Application of Classification in Machine Learning: An Analysis of Highway-Rail Grade Crossing Systems Safety" (2020). Theses and Dissertations. 709.
https://repository.fit.edu/etd/709
Comments
Copyright held by author