Document Type
Report
Abstract
This paper introduces two real-time elastography techniques based on analytic minimization (AM) of regularized cost functions. The first method (1D AM) produces axial strain and integer lateral displacement, while the second method (2D AM) produces both axial and lateral strains. The cost functions incorporate similarity of RF data intensity and displacement continuity, making both AM methods robust to small decorrelations present throughout the image. We also exploit techniques from robust statistics to make the methods resistant to large local decorrelations. We further introduce Kalman filtering for calculating the strain field from the displacement field given by the AM methods. Simulation and phantom experiments show that both methods generate strain images with high SNR, CNR and resolution. Both methods work for strains as high as 10% and run in real-time. We also present in-vivo patient trials of ablation monitoring. An implementation of the 2D AM method as well as phantom and clinical RF-data can be downloaded from http://www.cs.jhu.edu/~rivaz/Ultrasound_Elastography
Publication Date
2009
Recommended Citation
Rivaz, Hassan, "Real-Time Regularized Ultrasound Elastography" (2009). Link Foundation Modeling, Simulation and Training Fellowship Reports. 11.
https://repository.fit.edu/link_modeling/11
Standard cover form for report
Comments
Link Foundation Fellowship for the years 2008-2009.